文章编号:0253-2239(2001)06-0762-04

用 Eu³⁺作探针研究硼铅玻璃材料*

陈宝玖1)2) 王海字1)2)3) 黄世华1)2)

1),中国科学院激发态物理开放实验室,长春130021

2),中国科学院长春光学精密机械与物理研究所,长春130021 3),稀土材料化学及应用国家重点实验室,北京100871

摘要: 利用 Eu³⁺离子探针技术对所设计的摩尔组分为(79.5 - x)BO_{3/2} -(20 + x)PbF₂ - 0.5Eu₂O₃(x = 0,10,20,30, 40) 玻璃体系进行了研究。测量了不同组份玻璃的激发光谱,得到了各个配比玻璃样品的声子边带(PSB)谱,计算 了电声子耦合常数 g ,讨论了 g 对组份的依赖关系。在此基础上讨论了该基质中稀土离子的无辐射跃迁行为。测量 了在 362 nm 激发下不同配比样品 ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ ${}^{7}F_{1}$ ${}^{7}F_{2}$ 的发射光谱,并利用发射光谱计算了 Eu^{3+} 离子在该玻璃体系 中光学跃迁的 J-O 参量 Ω_2 进而讨论了其结构特性。

关键词: Eu³⁺探针;声子边带;硼铅玻璃

中图分类号:TO171.1+12 文献标识码:A

1 引 言

对 Eu³⁺离子而言,其⁵ D_0 →⁷F(J = 0 ~ 6)的 辐射跃迁远比⁵ $D(J = 0 \sim 3)$ 间的辐射跃迁强 ⁵ D_{I} 能级间主要以多声子无辐射弛豫为主,而无辐射跃 迁与稀土离子在玻璃材料中的微观结构有密切关 系 从根本上讲无辐射跃迁几率取决于基质材料分 子振动能量的大小。 Eu^{3+} 离子的 $^{5}D_{2}$ 与 $^{5}D_{3}$ 能级的 间距(约 2872 cm⁻¹)比一般无机材料中分子或原子 的振动能量都大,当激发波长在 ${}^{5}D_{3} \sim {}^{5}D_{2}$ 间变化, 监测⁵ D_0 → ⁷ F_{4} 约 612 nm)跃迁(如图 1),就可以获 得该材料的声子边带谱 这里 Eu³⁺只起光谱探针作 用^{1]}。根据稀土离子能级间的跃迁选择定则可知, $^{7}F_{0}$ → $^{5}D_{2}$ 的跃迁为纯电子跃迁^[2,3],因此可以从声 子边带谱强度和纯电子跃迁的光谱强度来确定电声 子耦合系数 g,关系如下^[4]:

$$g = \int I_{\rm PSB} d\lambda / \int I_{\rm PET} d\lambda$$
 , (1)

其中 Ipps 为声子边带谱强度 ,Ippt 为纯跃迁谱强度。 Eu^{3+} 的⁵ D_0 →⁷F(J = 2 A 6)跃迁是电偶极允 许的,根据J-O理论^[56]辐射跃迁几率可以表示为

收稿日期:1999-10-25;收到修改稿日期:2000-03-27

$$A_{\rm ed} = \frac{64\pi^4 e^2}{3h} \frac{\overline{\nu}^3}{2J'+1} \frac{n(n^2+2)^2}{9} \times \sum_{t=2,4,6} \Omega_t \varphi' J' \parallel U^{(t)} \parallel \varphi J^2.$$
(2)

示为

$$A_{\rm md} = \frac{64\pi^4}{3h} \frac{\overline{\nu}_{\rm md}^3}{2J' + 1} n^3 S_{\rm md} , \qquad (3)$$

式中 Smd 不依赖于基质材料,一般认为是一常数。考 虑到 Eu^{3+} 的⁵ $D_0 \rightarrow {}^7F(J = 2 A \beta)$ 跃迁的距阵元特 点,由(2)式、(3)式可以得到

$$\frac{A_J}{A_{\rm md}} = \frac{e^2}{S_{\rm md}} \frac{\overline{\nu}_{J}^3}{\overline{\nu}_{\rm md}^3} \frac{(n^2+1)^2}{9n^2} \Omega_J \varphi' J' \parallel U^{(J)} \parallel \varphi J^2.$$
(4)

这里忽略了 $^{5}D_{0} \rightarrow ^{7}F_{1} \pi^{5}D_{0} \rightarrow ^{7}F(J = 2 A 6)$ 跃迁 波长不同而产生的折射率差异。由于发射光谱的积 分强度与跃迁几率有如下关系

Fig.1 The experimental procedures for measurement of PSB spectra

^{*} 国家自然科学基金(19804011)国家科委863高科技 (863-715-003-0010)和973 国家重点基础研究规划----稀土 功能材料的基础研究(G1998061309) 资助项目。

$$\int I_{J} d\nu_{J} / \int I_{md} d\nu_{md} = \frac{A_{J}}{A_{md}}, \qquad (5)$$

如果测量得到 Eu³⁺的发射光谱的 ${}^{5}D_{0} \rightarrow {}^{7}F_{1} = 2 A \delta$)发射峰,根据(4)式、(5)式就可 以计算得到该材料的 J-O 强度参数 $\Omega_{i}(t = 2 A \delta)$ 。

本文设计了以 B₂O₃ 和 PbF₂ 两种成分不同配比 的玻璃体系,并以 Eu³⁺为掺杂发光中心。玻璃材料 是一种非晶态材料,稀土离子在其中处在非对称的 微观晶场环境中,因此严格的晶体场理论对其不再 适用,本文根据 Eu³⁺特殊的光学性质提出了用其作 为探针,对设计材料的性质进行分析。设计这一玻 璃体系的目的是为了研究该体系可能应用于稀土掺 杂的纳米晶玻璃⁷¹。

2 实 验

实验中所用原材料均为分析纯,按照不同配比 (79.5 - x)BO_{3/2} - (20 + x)PbF₂ - 0.5Eu₂O₃ (x = 0,10,20,30,40)分别称取原料 10 g,并分别在 玛瑙研钵研磨混合均匀后,装入刚玉坩埚,待马弗炉 温度升高到 1100 ℃时放入,在该温度下恒温 5 min ~10 min 取出,立即倾倒在温度为 100 ℃左右的铜 模具中,待冷却到室温后进行抛光处理。实验中激 发光谱及发射光谱均在日立公司的 F-4500 型荧光 光谱仪上测量得到。

3 实验结果与讨论

图 2 为监测 612 nm 发射得到不同配比样品的 激发光谱,其中 6p、5p、4p、3p、2p 分别表示原料 PbF₂ 的摩尔含量为 60%、50%、40%、30%、20% 的样品。 扫描范围为 300 nm ~ 650 nm,在这个范围内共观察 到 7 个峰,波长分别在 360 nm、380 nm、395 nm、416 nm、464 nm、529 nm、582 μ m。 它们分别对应从 Eu³⁺ 基态 ⁷F₀ 到激发态⁵D₄ ⁵L₈ 入 ⁵G_{2 3 4 5 6} ⁵L₇ 入 ⁵L₆、

Fig.2 The excitation spectra of Eu³⁺ for monitoring at 612 nm in borate-lead glasses

 ${}^{5}D_{3}$ 、 ${}^{5}D_{2}$ 、 ${}^{5}D_{1}$ 、 ${}^{5}D_{0}$ 的跃迁。这几个激发光谱峰的线 形都不是对称的,这是由于 Eu^{3+} 离子的 ${}^{7}F_{J}$ 能级相 距较近,基态 ${}^{7}F_{0}$ 可以通过热激发到 ${}^{7}F_{1-6}$ 上, Eu^{3+} 在态 ${}^{7}F_{J}$ 上的分布几率由下式表示

$$\frac{C_J}{C_0} = \frac{g_J}{g_0} \exp[-(E_J - E_0)/(kT)], \quad (6)$$

式中 $C_{f}(J = 0 \sim 6)$ 表示⁷ F_{J} 态布居 ,能级简并度 g_{J} = 2J + 1 , E_{J} 为能级⁷ F_{J} 的能量 ,k 为玻尔兹曼常数 , T 为热力学温度。根据(6)式可计算当温度为 300 K (实验室温度)时 ⁷ F_{J} 各态的布居分布为

 $C_4 = 0.0007\%$, $C_5 = 0$, $C_6 = 0$.

可见即使在 300 K 温度时,电子占据 ${}^{7}F_{1}$ 态几率也 是很大的。因此室温下的吸收光谱和激发光谱都可 能观察到始于 ${}^{7}F_{1}$ 态的跃迁,它与始于 ${}^{7}F_{0}$ 态的跃迁 相互重叠,使该谱带成非高斯线形。

图 3 为测量得到的不同配比样品的声子边带 谱,从这个声子边带谱中可以看到两个较强的宽带 声子振动峰,对不同配比样品的声子边带谱和纯电 子跃迁峰进行高斯拟合,得到声子边带谱两个主要 声子振动峰的中心平均位置分别在 1258 cm⁻¹和 1866 cm⁻¹。同时得到(1)式中的声子边带谱积分强 度 *I*_{PSB}和纯电子跃迁积分强度 *I*_{PET},对不同配比样 品根据(1)式计算电声子耦合系数 *g*。

Fig. 3 The phonon sidebond spectra for different composition glasses

图 4 为电声子耦合系数 g 与组份的关系,其中 横轴表示 B_2O_3 (或原料 PbF₂)的摩尔百分比含量,纵 轴表示电声子耦合系数。从图中可以看出,随着 B_2O_3 (或 PbF₂)的含量的变化电声子耦合系数也发生 变化,并且当 PbF₂的摩尔配比为 30% ~ 50% 时,该 配比的电声子耦合系数最小。

根据 Miyakawa-Dexter 关于多声子无辐射弛豫过 程的理论^[8],多声子无辐射跃迁几率由下式给出

$$W = W_0 \exp(-\alpha \Delta E), \qquad (7)$$

其中 ΔE 为发生无辐射跃迁的两个能级间能量差, W_0 是个常数。 α 是与声子参与数 p 和电声子耦合系数 α 有关的参数,它可以表示为

 $\alpha = (\hbar \omega) \left[\ln (p/g) - 1 \right],$ (8) 其中声子参与数 p 可以表示为

$$p = \Delta E/\hbar\omega. \tag{9}$$

根据(7)式、(8)式和(9)式,多声子参与的无辐射弛 豫几率可以写为

$$W = W_0 \exp\left\{-\frac{\Delta E}{\hbar\omega} \left[\ln\left(\frac{\Delta E}{\hbar\omega} \frac{1}{g}\right) - 1\right]\right\}. \quad (10)$$

对于此系列玻璃材料中 $\hbar\omega$ 及 ΔE 基本保持不变 , W_0 是个常数。因此无辐射跃迁几率仅与电声子耦合系 数 g 有关 ,并且 g 越小无辐射跃迁几率也越小。根据 (10)式及图 4 中电声子耦合系数随着样品配比的变 化关系 ,当 PbF₂ 的摩尔配比为 30% ~ 50% 时 ,无辐 射跃迁几率较小。

图 5 为 362 nm 激发下不同配比玻璃材料中 Eu³⁺在 500 nm~650 nm 波长范围内的发射光谱,三 个发射峰分别来自于 ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$, ${}^{7}F_{1}$, ${}^{7}F_{2}$ 的跃迁。从 图中可以看出随着 B₂O₃ 含量的增加 ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ 跃迁 相对于 ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ 跃迁明显增强,这说明不同组份的

Fig. 5 The emission spectra of Eu^{3+} in various glasses under 362 nm excitation

样品中 Eu³⁺ 所处的微观环境是不同的。

图 6 为根据(4)式、(5)式计算得到的 Ω_2 随着 B₂O₃ 含量的变化曲线,可以看出随着 B₂O₃ 含量增加 Ω_2 值非线性地增大。一般认为 Ω_2 反应材料的配位 对称性和结构的有序性特征 Ω_2 越大玻璃的共价性 越强 ,反之 ,则离子性越强。在我们制备的系列材料 中 Ω_2 随着 B₂O₃ 含量增加而增大 ,这是可以理解 的。因为 ,B₂O₃ 在玻璃中一般表现较强的共价特 性 ,并且 B-O 键是构成玻璃的主要骨架 ,也是导致 微观结构无序性的重要成份,因此当增加 B₂O₃ 含量 时 玻璃的无序性增强 ,共价性也增强。这一实验事 实告诉我们用 Eu³⁺ 作为光谱探针从发射光谱获得 J-O 参数的方法研究玻璃材料是可行的。

Fig.6 The J-O parameter Ω_2 varied with content of BO_{3/2} in glasses

结论 利用 Eu³⁺探针技术对组份为

 $(79.5 - x)BO_{3/2} - (20 + x)PbF_2 - 0.5Eu_2O_3$ (x = 0,10,20,30,40)

玻璃材料的声子边带谱进行了测量,证明了 PbF₂的 摩尔配比为 $30\% \sim 50\%$ 时电声子耦合系数最小,无 辐射跃迁几率也最小。利用发射光谱计算 J-O 参数 Ω_2 随着 B₂O₃ 的含量增加而增大。

参考文献

- [1] Soga K, Inoue H, Makishima A. Fluorescence properties of fluorozirconate glasses containing Er³⁺ ions. J. Lumin., 1993, 55(1):17~24
- [2] Weber M J. Optical Properties of Ions in Crystals. eds. Crosswhite H M, Moos H W, New York : Wiley Interscience. 1976. 467 ~ 484
- [3] Ribeiro S J L , Diniz R E O , Messaddeq Y et al. . Eu^{3+} and Gd^{3+} spectroscopy in fluoroindate glasses. Chem. Phys. Lett. , 1994 , **220**($3 \sim 5$) 214 ~ 218
- [4] Tanabe H, Todoroki S, Hirao K et al.. Phonon sideband of Eu³⁺ in sodium borate glasses. J. Non-Cryst. Sol., 1990, 122(1) 59~65

- [5] Judd B R. Optical absorption intensities of rare earth ions. Phys. Rev., 1962, 127 (3):750 ~ 761
- [6] Ofelt G S. Intensities of crystal spectra of rare earth ions. J. Chem. Phys., 1962, 37 (3) 511 ~ 520
- [7]陈宝玖.稀土掺杂的玻璃材料制备与上转换发光的研 究.中国科学院长春物理研究所博士学位论文.1999.12

~ 13

[8] Miyakawa T, Dexter D L. Photon sideband, multiphonon relaxation of excited states, and photon-assisted energy transfer between ions in solids. *Phys. Rev.* (B), 1970, 1(7):2961 ~ 2969

A Study on Borate-Lead Glasses with Eu³⁺ Ion as Probe

Chen Baojiu¹⁾²⁾ Wang Haiyu¹⁾²⁾³⁾ Huang Shihua¹⁾²⁾

- (1), Laboratory of Excited States Processes, The Chinese Academy of Sciences, Changchun 130021
- 2), Changchun Institute of Optics, Fine Mechanics and Physics, The Chinese Academy
 - of Sciences, Changchun 130021
- 3), State Key Laboratory of Rare Earth Materials Chemistry and Applications,
 - Peking University, Beijing 100871

(Received 25 Obtober 1999; revised 27 March 2000)

Abstract : The Eu³⁺ probe technique is used to the analysis of borate-lead glasses system of (79.5 - x)BO_{3/2} - (20 + x)PbF₂ - 0.5Eu₂O₃(x = 0, 10, 20, 30 A0). The excitation spectra for several glasses are measured, the phonon side-band spectra and electron-phonon coupling constant are obtained. The multiphonon non-radioactive transition probabilities are discussed. The emission spectra of Eu³⁺ originated from ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$, ${}^{7}F_{1}$, ${}^{7}F_{2}$ transitions under 362 nm excitation in this glass system and the optical transitions J-O parameter Ω_{2} are obtained, the structure properties of borate-lead glasses are analysed. **Key words** : Eu³⁺ probe ; phonon side-band ; borate-lead glasses